

Application News

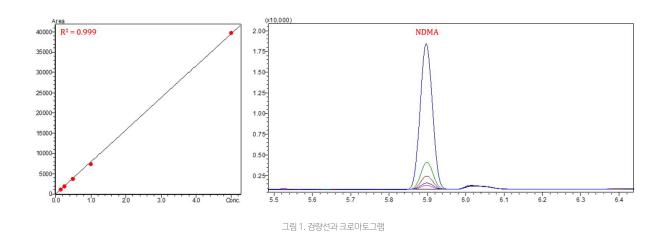
LC-MS, GC-MS

Liquid Chromatograph Mass Spectrometer, Gas Chromatograph Mass Spectrometer

Analysis of N-Nitrosodimethylamine(NDMA) and

N-Nitrodiethylamine(NDEA) Using LC-MS/MS, **GCMS and HS-GCMS**

No.SSK-LCMS-1901


N-Nitrosodimethylamine(이하 NDMA)과 N-Nitrosodiethylamine(이하 NDEA)은 Nitrosamine류 화합물로써 발암물질로 잘 알려져 있으며, 최근에는 고혈압 치료제인 발사르탄(Valsartan)의 원료 생산과정에서 부산물로 생성된 것이 확인되어 세계적인 이슈가 되었다. 이에 미국, 유럽, 일본 및 한국에서 발사르탄(Valsartan)과 사르탄류(Sartan-type drug)에 대한 시험법 및 잠정 기준을 마련하였으며, 본 뉴스레터에서는 미국 U.S FDA¹⁾, 유럽 EDQM²⁾ 및 한국 MFDS³⁾ 시험법을 바탕으로 NDMA와 NDEA 분석을 진행하였다.

■미국 - U.S. FDA의 HS-GCMS법을 이용한 NDMA 분석

U.S. FDA에서의 NDMA 분석법인 HS-GCMS법을 바탕으로 Shimadzu GCMS-QP2020과 HS-20을 이용하여 NDMA를 0.15 ~ 5 µq/mL 농도 범위에서 분석을 진행하였으며, 세부 분석 조건은 〈표 1〉과 같다.

표 1. HS-GCMS 분석조건

Headspace system	HS-20
Measurement mode Oven Temp.	: Loop : 120 ℃
Heating Time Sample Line Temp.	: 15 min : 125 ℃
Transfer Line Temp.	: 130 ℃
Shaking level	: Level 4
Injection Time	: 1min
GCMS System	GCMS-QP2020
Column Injection mode Column flow Purge flow GC Temp. Ion Source Temp.	: Rtx-Wax (30 m x 0.32 mm x 0.5 μm) : Split (5:1) : 3 mL/min : 3 mL/min : 70 °C (4 min) – 20 °C/min - 240 °C(3.5min) : 230 °C
Interface Temp. Acquisition	: 250 ℃ : SIM (m/z 74, 42)

■HS-GCMS 분석 결과

1. 검량선

NDMA를 N, N-Dimethyl sulfoxide(이하 DMSO)에 녹여 농도가 100 µg/mL이 되도록 표준원액을 조제하고, 이를 DMSO로 희석하여 NDMA의 절대량이 0.15, 0.25, 0.5, 1, 5 μ g이 되도록 검량선을 작성하였다. 검량선과 크로마토그램은 〈그림 1〉과 같으며, 직선성은 R² = 0.999로 우수하게 나타났다.

2. 재현성

재현성 확인을 위해 발사르탄 500 mg을 DMSO 5 mL에 녹인 후, NDMA 0.25 μ g을 첨가한 시료를 3 회 반복 측정하였다. 재현성 결과는 \langle 표 2 \rangle 에서 보는 바와 같이 % RSD가 1.4 % 로 우수하게 나타났으며, 크로마토그램도 〈그림 2〉와 같이 양호한 것으로 나타났다.

표 2. NDMA 측정 결과 (n=3)

#	NDMA Conc. (µg)		
1	: 0.241		
2	: 0.246		
3	: 0.247		
Average	: 0.245		
%RSD	: 1.4%		

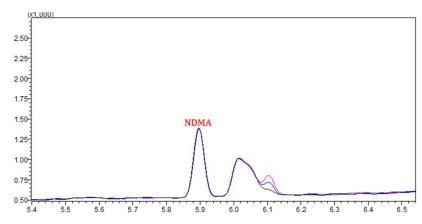


그림 2. NDMA 크로마토그램 (n=3)표 2. NDMA 측정 결과 (n=3)

■유럽 - EDQM의 LC-MS/MS 시험법을 이용한 NDMA와 NDEA 분석

유럽 EDQM에서의 NDMA와 NDEA 분석법인 LC-MS/MS법을 바탕으로 Shimadzu LCMS-8050을 이용하여 0.2 ~ 100 ng/mL 농도 범위에서 NDMA와 NDEA의 분석을 진행하였으며, 세부 분석 조건은 〈표 3〉과 같다

표 3. LC-MS/MS 분석조건

HPLC System	Nexera UHPLC		
Column	: HSS-T3 (3.0 mml.D. x 100 mm,. 1.8 μm)		
Mobile phase A	: 0.1 % Formic acid in Water		
Mobile phase B	: Methanol		
Gradient program	: 5 % B (3.0 min) - 30 % B (3.0 min) - 60 % B (8.0 min) - 90 % B (9.0 – 12.0 min) - 5 % B (12.01 – 16.0 min)		
Flow rate	: 0.5 mL/min		
Oven temp.	: 30 ℃		
Injection volumn	: 20 μL		
MS System	LCMS-8050		
Nebulizing gas flow	: 3 L/min		
Drying gas flow	: 5 L/min		
DL Temp.	: 150 ℃		
IF Temp.	: 250 ℃		
Heating Block Temp.	: 200 ℃		
Ionization Method	: APCI		
Data Acquisition	: MRM mode		

■LC-MS/MS분석 결과

NDMA, NDEA 표준물질과 내부표준물질인 NDMA $-d_6$, NDEA $-d_{10}$ 을 메탄올에 녹여 농도가 500 $\mathrm{ng/mL}$ 가 되도록 표준원액 및 내부표준원액을 조 제한 후, 메탄올로 희석하여 NDMA와 NDEA는 0.2, 0.5, 1, 2, 10, 20, 50, 100 ng/mL가 되게 하였으며, 내부표준물질인 NDMA $-d_6$, NDEA $-d_{10}$ 는 10 ng/mL이 되도록 첨가하여 검량선을 작성하였다. NDMA 및 NDEA의 검량선과 크로마토그램은 〈그림 3〉과 같으며, 직선성은 NDMA와 NDEA 모두 $R^2 = 0.999$ 로 우수하게 나타났다.

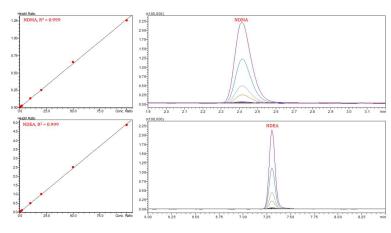
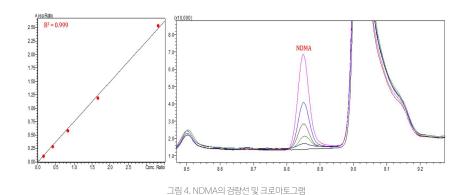


그림 3. NDMA와 NDEA의 검량선 및 크로마토그램

■한국 - MFDS의 GCMS법을 이용한 NDMA 분석

한국 MFDS의 GCMS 시험법을 바탕으로 Shimadzu GCMS-QP2020을 이용하여 10 ~ 200 ng/mL 농도 범위에서 NDMA를 분석하였으며, 분석 조건은 〈표 4〉와 같다.


표 4. GCMS 분석조건

GCMS System	GCMS-QP2020
Column	: Rtx-624 (60 m x 0.25 mm x 1.4 µm)
Injector Temp.	: 220 ℃
Injection mode	: Split (5:1)
Column flow	: Linear Velocity
Linear Velocity	: 26.1 cm/sec
Purge flow	: 5 mL/min
GC Temp.	: 80 °C (4 min) − 20 °C/min − 240 °C(3.5min)
Ion Source Temp.	: 230 ℃
Interface Temp.	: 250 ℃
Acquisition mode	: SIM : NDMA m/z 74, 42, 59 , NDMA-d ₆ m/z 80, 46

■GCMS 분석 결과

1. 검량선

NDMA 표준물질과 NDMA- d_6 내부표준물질을 메탄올에 녹여 NDMA는 농도가 1,000 ng/mL이 되도록 조계하였으며, NDMA- d_6 는 농도가 300 ng/mL가 되도록 조제하였다. 검량선은 NDMA 농도가 10, 25, 50, 100, 200 ng/mL가 되도록 메탄올로 희석하여 작성하였으며, NDMA-d₆ 는 60 ng/mL가 되도록 첨가하였다. NDMA의 검량선 및 크로마토그램은 〈그림 4〉와 같으며, 직선성은 $R^2 = 0.999$ 로 우수하게 나타났다.

2. 재현성

재현성 확인을 위해 NDMA 50 ng/mL에 내부표준물질 NDMA $-d_6$ 를 60 ng/mL가 되게 첨가한 시료를 6회 반복 분석하여 NDMA와 NDMA $-d_6$ 의 면적비에 대한 % RSD 값을 확인하였다. 재현성 결과는 〈표 5〉에서 보는 것과 같이 % RSD가 1.1 % 로 우수하게 나타났으며, 크로마토그램은 〈그림 5〉와 같다.

표 5. NDMA 및 NDMA-d₆의 분석 결과 (n=6)

	NDMA Area	NDMA-d ₆ Area	NDMA/NDMA-d ₆ Area ratio
1.	42.718	61.096	0.700
2.	41.009	56.901	0.721
3.	40.219	57.280	0.702
4.	39.450	55.749	0.708
5.	38.376	55.323	0.701
6.	38.535	54.382	0.709
	& RSD		1.1%

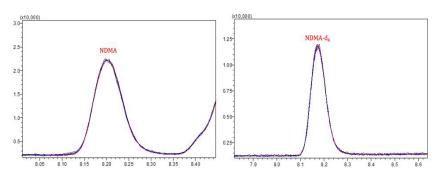


그림 5. NDMA & NDMA-d₆의 크로마토그램 (n=6)

■한국 - MFDS의 LC-MS/MS법을 이용한 NDMA와 NDEA의 분석

한국 MFDS에서는 발사르탄을 포함한 사르탄류 6 종에 대해서 〈표 7〉과 같이 잠정관리기준이 설정된 LC-MS/MS를 이용한 NDMA, NDEA 분석법 을 공개하였으며, 이 시험법을 바탕으로 Shimadzu LCMS-8050을 이용하여 0.5 ~ 100 ng/mL 농도 범위에서 NDMA 및 NDEA 분석을 진행하였 다. 컬럼은 일반적으로 많이 사용하는 C_{18} 컬럼과 MFDS 시험법에서 제안하는 Kintex F5 컬럼 두 종류를 이용하였으며, 세부 분석 조건은 \langle 표 8 \rangle 과 같다.

표 7. 사르탄류 6종에 대한 NDMA, NDEA 잠정관리기준

종류		잠정.	성분명	
		NDMA	NDEA	0年0
1.	발사르탄	0.3 ppm	0.08 ppm	발사르탄
2.	로사르탄	1.0 ppm	0.27 ppm	로사르탄칼륨
3.	올메사르탄	2.4 ppm	0.66 ppm	올메사르탄
				메독소밀
4.	이르베사르탄	0.3 ppm	0.09 ppm	이르베사르탄
5.	칸데사르탄	3.0 ppm	0.83 ppm	칸데사르탄
				실렉세틸
6	피마사르탄	3.0 ppm	0.22 ppm	피마사르탄칼륨

표 8. LC-MS/MS 분석조건

표 8. LC=INIS/INIS 군식소건				
HPLC System	: Nexera UHPLC			
Column	: Shimpack GIST C18 (3.0 mml.D. x 100 mmL ,. 3.0 mm) SSK INFORMED (3.0 mml.D. x 100 mmL ,. 3.0 mm) Phenomenex Kintex F5 (3.0 × 100 mm, 2.6 µm, 100 Å) 2)MFDS Method			
Mobile phase A	: Water			
Mobile phase B	: Acetonitrile			
Gradient program	: 5 % B (1.50 min) – 30 % B (3.00 min) - 90 % B (4.00 min – 5.00 min) – 5 % B (5.50 min – 10.00 min)			
Flow rate	: 0.4 mL / min			
Oven temp	: 40 ℃			
Injection volumn	: 20 μL			
MS System	: LCMS-8050			
Nebulizing gas flow	: 3 L/min			
Drying gas flow	: 5 L/min			
DL Temp.	: 150 ℃			
IF Temp.	: 250 ℃			
Heating Block Temp.	: 200 ℃			
Ionization Method	: APCI			
Data Acquisition	: MRM mode			

■LC-MS/MS 분석 결과

1. 검량선

NDMA, NDEA 표준물질 및 NDMA $-d_6$, NDEA $-d_{10}$ 내부표준물질을 각각 메탄올에 녹여 농도가 500 \log/m L가 되도록 표준원액 및 내부표준원액 을 조제한 후, 메탄올로 희석하여 NDMA와 NDEA는 0.5, 1, 2, 10, 25, 50, 100 ng/mL가 되게 하였으며, NDMA $-d_6$, NDEA $-d_{10}$ 는 20 ng/mL이 되도록 첨가하여 검량선을 작성하였다. C_{18} 컬럼를 이용한 NDMA와 NDEA의 검량선과 크로마토그램은 \langle 그림 $6\rangle$ 과 같으며, 직선성은 NDMA가 R^2 = 0.998, NDEA가 R^2 = 0.997로 나타났다. 또, Kintex F5 컬럼에 대한 검량선과 크로마토그램은 \langle 그림 7 \rangle 과 같으며, 직선성은 NDMA와 NDEA 모 $= R^2 = 0.999$ 로 나타났다.

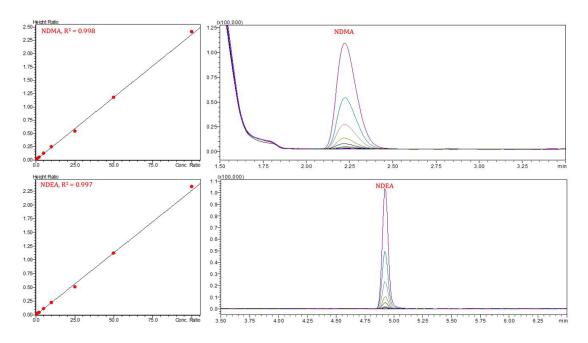


그림 6. NDMA와 NDEA의 검량선과 크로마토그램 (C₁₈ Column)

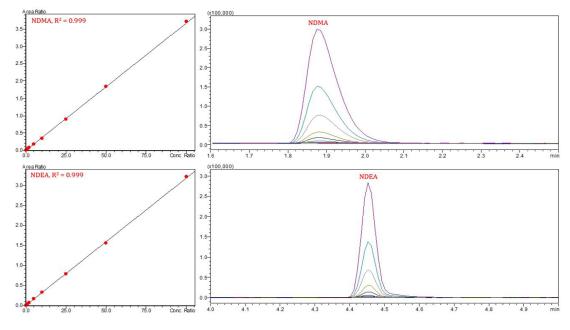
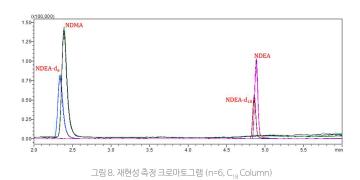


그림 7. NDMA와 NDEA의 검량선과 크로마토그램 (Kintex F5 Column)


2. 재현성

재현성 확인은 C_{18} 컬럼을 이용하였으며, 50~ng/mL 농도의 NDMA와 NDEA에 내부표준물질인 NDMA-d6와 NDEA-d10을 20~ng/mL 농도가 되도록 첨가한 시료를 6회 반복 측정하여 NDMA와 NDMA $-d_6$, NDEA와 NDEA $-d_{10}$ 의 면적비에 대한 % RSD를 산출하였다.

재현성 측정 결과는 〈표 9〉에서 보는 바와 같이, NDMA가 1.8 %, NDEA가 2.5 % 수준으로 우수한 것으로 나타났으며, 크로마토그램은 〈그림 8〉과 같다.

표 9. 세연당 특당 글씨 (II-0, C ₁₈ Column)						
NO —	Area		Area ratio	Area		Area ratio
	NDMA	NDMA-d ₆	(NDMA NDMA-d ₆)	NDEA	NDEA-d ₆	(NDMA NDMA-d ₁₀)
1.	689,899	395,045	1.74	310,850	166,152	1.87
2.	691,081	389,840	1.77	305,969	166,149	1.84
3.	684,071	391,610	1.74	301,080	159,426	1.88
4.	661,695	365,607	1.80	266,402	144,388	1.84
5.	673,384	380,337	1.77	309,525	161,314	1.91
6.	653,236	380,137	1.71	289,721	162,706	1.78
% RSD		1.8%	% F	RSD	2.5%	

표 9. 재현성 측정 결과 (n=6, C, Column)

■결론

본 뉴스레터는 미국, 유럽 및 한국의 시험법을 바탕으로 의약품 중의 불순물인 발사르탄 내 NDMA, NDEA 분석에 적용되는 GCMS, HS-GCMS, LC-MS/MS시험법에 대해 검량선 범위, 직선성 및 재현성 등에 대해 살펴보았으며, 그 결과를 〈표 10〉에 정리하였다.

표 10. 분석 결과

	미국 FDA	유럽।	EDQM	한국 MFDS		
시험법 HS-GCMS	HS-GCMS	LC-MS/MS	GCMS	LCMS/MS		
	LC IVIS/IVIS	GCIVIS	C18 column	F5 column		
대상 성분	NDMA	NDMA NDEA	NDMA	NDMA NDEA	NDMA NDMA	
검량선 범위	(0.15 ~ 5) µg	(0.2 ~ 100.0) ng/mL	(10.0 ~ 200.0) ng/mL	(0.5 ~ 100.0) ng/mL	(0.5 ~ 100.0) ng/mL	
직선성(R ²)	>0.999	>0.999 >0.999	⟩ 0.999	⟩0.997 ⟩0.998	>0.999 >0.999	
% RSD	1.4%		1.1%	1.8% 2.5%		

■참고문헌

1) U.S FOOD & DRUG ADMINISTRATION, GC/MS Headspace Method for Detection of NDMA in Valsartan Drug Substance and Drug Products, 2019, https://www.fda.gov/media/115965/download 2) European Directorate for the Quality of Medicines, Test method for the determination of NDMA by LCINIS/MS in Valsartan finished products, www.edgm.eu/sites/default/files/omcl-method-determinationndma-valsartan-cvua-september2018.pdf

3) 식품의약품안전처. 사르탄계열 의약품 중 니트로소메틸아민, 니트로소메틸아민 동시 분석법 및 잠정관리기준, 2018, www.mfds.go.kribrd/m_218/view.do?seq=33264